Thermodynamic Laws, Gibbs Free Energy \& pE/pH

or how to predict chemical reactions without doing experiments

OCN 623 - Chemical Oceanography

Definitions

- Extensive properties
- Depend on the amount of material
- e.g. \# of moles, mass or volume of material
- examples in chemical thermodynamics:
- G -- Gibbs free energy
- H -- enthalpy

Intensive properties

- Do not depend on quantity or mass
e.g.
- temperature
- pressure
- density
- refractive index

Reversible and irreversible processes

- Reversible process occurs under equilibrium conditions
e.g. gas expanding against a piston

$p=P+\partial p$ reversible $p=P+\Delta p$ irreversible
- No friction or other energy dissipation
- System can return to its original state
- Very few processes are really reversible in practice - e.g.

Daniell Cell
$\mathrm{Zn}+\mathrm{CuSO}_{4}=\mathrm{ZnSO}_{4}+\mathrm{Cu}$
with balancing external emf
Compression of gases
Vaporisation of liquids

- Is a concept used for comparison

Spontaneous processes

- Occur without external assistance
- e.g.
expansion of a gas from region of high pressure to low pressure
diffusion of a solute in a solvent

Are irreversible by definition -- occur at a finite rate

1st law of thermodynamics

- Energy cannot be created or destroyed
- when one kind of energy disappears it is transformed into an equivalent quantity of another kind

$$
\begin{aligned}
& \Delta U=q-w \\
& d U=d q-d w
\end{aligned}
$$

$\mathrm{dU}=$ change in internal energy of the system $d q=$ heat absorbed by the system + $\mathrm{dw}=$ work done by the system +

- U is a thermodynamic function
dU depends only on the initial and final states of the system-not the path taken q and w are NOT thermodynamic functions

Internal energy of system is increased by gaining heat (q)

Internal energy of system is decreased when work is done by the system

$$
d U=d q-d w
$$

$$
\mathrm{W}_{\text {rev. }}>\mathrm{W}_{\text {irrev. }}
$$

- Work done by system during irreversible process is less than could be obtained if process was reversible
e.g. if piston moved at finite rate, friction dissipates energy

Chemical thermodynamics

HEAT

- Heat (q) is measured in terms of:
amount of substance x molar heat capacity x temp rise
- For phase change
$q=$ moles of substance \times molar latent heat
- q is the heat of reaction

WORK

- Work of expansion

$$
=P \Delta V
$$

where $\mathrm{P}=$ pressure and $\Delta \mathrm{V}$ is change in volume at constant volume $\Delta \mathrm{V}=0$, therefore $\mathrm{w}=0$ no work is done

Electrical work

- Occurs in electrical cells e.g.
$\mathrm{Zn}+\mathrm{Cu}^{2+}=\mathrm{Zn}^{2+}+\mathrm{Cu}$
- Electrical energy $=1$ * E *
E is the emf (voltage), $\mathrm{t}=$ time, $\mathrm{I}=$ current flowing
$\mathrm{It}=\mathrm{zF}$ for 1 mol
z= \# of electrons transferred,
F (Faraday) $=96,490$ Coulombs $/ \mathrm{mol}$
Electrical energy $=$ zEF
- System at constant volume
(all non-gas reactions are at constant volume)
$\mathrm{P} \Delta \mathrm{V}=\mathrm{w}=0$

$$
\Delta \mathbf{U}=\mathbf{q}_{\mathbf{v}}
$$

$q_{v}=$ heat at constant volume

- System at constant pressure
(all reactions open to atmosphere)

$$
\Delta \mathbf{U}=\mathbf{q}_{\mathbf{p}}-\mathbf{P} \Delta \mathbf{V}
$$

Ideal gas law $P \Delta V=\Delta n R T$
R is the gas constant $=8.314$ Joules $\mathrm{mol}^{-1} \mathrm{~K}^{-1}$
therefore $\Delta U=q_{p}-\Delta n R T$
rearranging $q_{p}=\Delta U+\Delta n R T$

- $\quad \mathrm{q}_{\mathrm{p}}$ is called the enthalpy H change in enthalpy $\Delta \mathrm{H}=\Delta \mathrm{U}+\mathrm{P} \Delta \mathrm{V}$ in absolute terms

$$
H=U+P V
$$

- H is a thermodynamic property, is defined in terms of thermodynamic functions: U, P and V

For an infinitesimal change at constant pressure:

$$
d H=d U+P d V
$$

- $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}{ }_{298}$
is the heat of formation of 1 mole of a compound from its elements at $298^{\circ} \mathrm{K}$
- $\Delta \mathrm{H}$ is $-\mathrm{ve}=$ exothermic reaction
- $\Delta \mathrm{H}$ is $+\mathrm{ve}=$ endothermic reaction
(seen from system perspective)
- $\Delta \mathrm{H}$ is proportional to amount of material is an extensive property
- $\Delta \mathrm{H}$ is equal in magnitude but opposite in sign for the reverse reaction, because it is a thermodynamic quantity
$\Delta H_{\text {products }}-\Delta H_{\text {reactants }}$
$\Delta \mathrm{H}$ for reaction is same regardless of number of steps between reactants and products

$$
\Delta \mathrm{H}=\Delta \mathrm{U}+\Delta \mathrm{nRT}
$$

- Can use component reactions to calculate enthalpy change for unknown reaction

Reaction
$\mathrm{H}_{2}+0.5 \mathrm{O}_{2}=\mathrm{H}_{2} \mathrm{O}$ (a)
$\mathrm{C}+\mathrm{O}_{2}=\mathrm{CO}_{2} \quad \Delta \mathrm{H}=-393.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Enthalpy
$\Delta \mathrm{H}=-285.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\underset{\text { (c) }}{\mathrm{C}_{2} \mathrm{H}_{6}}+3.5 \mathrm{O}_{2}=2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}=-1559.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$
can use above to calculate $\Delta \mathrm{H}$ for ethane formation 2* $b+3^{*} a-c$
$2 \mathrm{C}+2 \mathrm{O}_{2}+3 \mathrm{H}_{2}+1.5 \mathrm{O}_{2}-\mathrm{C}_{2} \mathrm{H}_{6}-3.5 \mathrm{O}_{2}=2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$

- $2 \mathrm{CO}_{2}-3 \mathrm{H}_{2} \mathrm{O}$
canceling yields
$2 \mathrm{C}+3 \mathrm{H}_{2}=\mathrm{C}_{2} \mathrm{H}_{6} \Delta \mathrm{H}=2^{*}-393.3+3^{*}-285.8-(-1559.8)$
$=-84.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$
- But enthalpy change alone is insufficient to allow prediction of likelihood of reaction
- Entropy change is also needed

2nd law of thermodynamics

$$
\mathrm{dS}=\frac{\mathrm{dq}}{\mathrm{req}} \mathrm{~T}
$$

change in entropy = amount of reversible heat absorbed by system divided by temperature

- Entropy is the degree of disorder of the system chance of finding something in a fixed volume- higher pressure, greater chance, liquid lower entropy than gas, solid lower than liquid
- Change in entropy measures capacity for spontaneous change diffusion of a solute from high concentration to low concentration, or a gas from high pressure to low pressure
- A system undergoing spontaneous change is moving to a greater degree of disorder
- Entropy is an extensive property
- Units heat/temperature $=\mathrm{J}$ (oules) $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$ for solids $\mathrm{dq}=$ moles x molar heat capacity x temperature rise
$d q=C_{m} d T$
- For phase change

$$
\Delta S=\frac{\mathrm{L}}{\mathrm{~T}}
$$

where L is the latent heat of fusion
e.g. for water $\mathrm{L}=6 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta S=\underline{6000}=22.0 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ for melting ice 273.1

- reversible reaction the net change in entropy is zero
- irreversible reaction there is a net increase in entropy
- Since nearly all reactions are irreversible, entropy is increasing -- called times arrow
- always increasing --cannot run time backwards

Third law of thermodynamics

The entropy of a perfectly crystalline material at the absolute zero ($-273.1^{\circ} \mathrm{C}$) is zero

- entropy allows prediction of the feasibility of reactions

Gibb's free energy

- Gibbs function $\mathrm{G}=\mathrm{H}-\mathrm{TS}$
equals the enthalpy - temperature x entropy
at constant volume $q=\Delta U$
- Tendency of reaction to occur is combination of energy and entropy change
- Reactions proceed in direction that minimises the internal energy, i.e. H is lowered
- Reactions proceed to maximise degrees of freedom i.e. entropy increases
- $\Delta \mathrm{G}$ is negative for a spontaneous reaction
- $G=H-T S$
- at constant temperature: $\mathrm{dG}=\mathrm{dH}-\mathrm{TdS}$
G is a thermodynamic function
ΔG for a reaction $=\Delta G_{\text {products }}-\Delta G_{\text {reactants }}$

Spontaneity of reactions

sign of $\Delta \mathrm{G}$	ΔH	ΔS	Comments
always -	-	+	Spontaneous at all T; reverse never spontaneous
always +	+	-	Never spontaneous at any T reverse reaction occurs
High T - Low T +	+	+	spontaneous at High T only
low T - high T +	-	-	Spontaneous at low T reverse rx at high T

- For an electrical system

$$
\Delta \mathrm{G}=-\mathrm{zEF}
$$

where:
$E=$ the emf of the cell (or half cell)
F = Faraday (a positive number)
$z=$ number of electrons involved in the reaction

- Thermodynamics applied to redox speciation
- Redox speciation has profound effects on chemical and biological processes
- Photosynthetic organisms, altered Earth's redox conditions from reducing to oxidising
- Profound consequences for life
- Anoxic conditions exist today
- Circulation changes may have resulted in limited anoxia in basins
- Removal rate of geochemical species affected by redox speciation
- Equilibrium thermodynamics can be used to predict redox speciation as a function of pH and $\mathrm{p} \varepsilon$

Definitions

- pH -- from the German, potens Hydrogen ion -strength of the hydrogen ion

$$
\begin{aligned}
& \mathrm{pH}=-\log \left\{\mathrm{H}^{+}\right\} \quad \text { Note: is activity not concentration } \\
& \mathrm{pH}=2(\mathrm{acid})=-\log \left\{\mathrm{H}^{+}\right\} \\
& \text {or }\left\{\mathrm{H}^{+}\right\}=10^{-2} \mathrm{M}=0.01 \mathrm{M}(10 \text { millimolar })
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{pH}=9 \text { (alkaline) } \\
& \left\{\mathrm{H}^{+}\right\}=10^{-9} \mathrm{M} \text { (1 nanomolar) }
\end{aligned}
$$

Also tendency of a solution to accept or transfer protons
high $\mathrm{pH}=$ low $\left\{\mathrm{H}^{+}\right\}$but high tendency to accept H^{+}
Predict speciation of ions as a function of pH and redox conditions

pH

- For a general acid dissociation reaction

$$
\begin{aligned}
& \mathrm{HA}+\mathrm{H}_{2} \mathrm{O}=\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-} \mathrm{K}_{1} \\
& -\log \left\{\mathrm{H}^{+}\right\}=-\log \mathrm{K}_{1}-\log \frac{\{\mathrm{HA}\}}{\left\{\mathrm{A}^{-}\right\}} \\
& \mathrm{pH}=\mathrm{pK}_{1}+\log \frac{\left\{\mathrm{A}^{-}\right\}}{\{\mathrm{HA}\}}
\end{aligned}
$$

- Can relate the pH of the solution to the equilibrium constant for the dissociation constant and the ratio of the base to the conjugate form

General case reaction

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{n}} \mathrm{~B}+\mathrm{nH}_{2} \mathrm{O}=\mathrm{nH}_{3} \mathrm{O}^{+}+\mathrm{B}^{-n} \quad \mathrm{~K}_{\mathrm{n}} \\
& \left.\mathrm{pH}=\frac{1}{\mathrm{n}} \mathrm{pK}_{\mathrm{n}}+\frac{1}{\mathrm{n}} \log \underset{\left\{\mathrm{H}_{n}\right.}{\left\{\mathrm{n}^{-n}\right\}}\right\} \\
& \text { since } \Delta \mathrm{G}=-\mathrm{RT} \text { InK }
\end{aligned}
$$

Rearrange and convert In to log

$$
\begin{aligned}
& \mathrm{pK}=\frac{\Delta \mathrm{G}}{2.303 \mathrm{RT}} \\
& \mathrm{pH}={ }_{2} \frac{\Delta \mathrm{G}}{2.303 \mathrm{RT}}+\log \frac{\left\{\mathrm{A}^{-}\right\}}{\left\{\mathrm{HA}^{\prime}\right\}}
\end{aligned}
$$

Shows the relationship between $\Delta \mathrm{G}$, the base, the conjugate form and pH

Redox speciation

- Oxidation/reduction is transfer of electrons from one species to another
- Define redox intensity of solution

$$
\mathrm{p} \varepsilon=-\log \left\{\mathrm{e}^{-}\right\}
$$

$\mathrm{p} \varepsilon$ is the hypothetical tendency of a solution to accept or donate electrons, analogous to pH

Oxidation--the increase in the oxidation number
e.g. Fe (II) to Fe (III)

- increase in charge on charged species
e.g. Co^{2+} to Co^{3+}

Reduction is the reverse

Oxidation-reduction reactions occur together
One component is oxidised, the other is reduced

Component that is reduced is the oxidising agent Component that is oxidised is the reducing agent

Reducing solution -electron activity is high $\mathrm{p} \varepsilon$ is low high tendency to donate electrons

Oxidising solution-electron activity is low $p \varepsilon$ is high high tendency to accept electrons

Can treat in same way as pH

Reduction of Fe by hydrogen

$$
\begin{aligned}
\mathrm{Fe}^{3+}+1 / 2 \mathrm{H}_{2(\mathrm{~g})}= & \mathrm{Fe}^{2+}+\mathrm{H}^{+} \quad \mathrm{K}_{1} \\
\mathrm{p} \varepsilon & =\frac{-\Delta \mathrm{G}}{2.303 \mathrm{RT}}+\log \frac{\left\{\mathrm{Fe}^{3+}\right\}}{\left\{\mathrm{Fe}^{2+}\right\}} \\
\mathrm{p} \varepsilon & =\frac{-\Delta \mathrm{G}}{2.303 \mathrm{RT}}+\log \frac{\{\mathrm{ox}\}}{\{\mathrm{red}\}}
\end{aligned}
$$

General reaction where n electrons are involved

$$
\begin{aligned}
& o x+n / 2 H_{2}=r e d+n e^{-}+n H^{+} \\
& p \varepsilon=\frac{1}{n} \log K+\frac{1}{n} \log \frac{\{o x\}}{\{r e d\}}
\end{aligned}
$$

Relationship to Eh electrode or redox potential

$$
\Delta G=-n E_{\text {cell }} F
$$

At standard conditions $\Delta \mathrm{G}^{0}=-\mathrm{nE} \mathrm{E}^{0} \mathrm{~F}$ where $E^{0}=$ std redox potential of cell

$$
\text { so } p \varepsilon_{\text {cell }}=\underline{E}_{\text {cell }} \underline{F}
$$

2.303RT
$E_{\text {cell }}$ is the sum of the $1 / 2$ cell potentials

Can now use the pH and $\mathrm{p} \varepsilon$ relationships to predict the stability of species under various $\mathrm{pH} / \mathrm{p} \varepsilon$ conditions

TABLE 7.1
Standard Electrode Potentials for Selected Half-Reactions

Reaction	Log K at $25^{\circ} \mathrm{C}$	Standard Electrode Potential (V) at $25^{\circ} \mathrm{C}$
$\mathrm{Na}^{+}+e^{-}=\mathrm{Na}(\mathrm{s})$	-46	-2.71
$\mathrm{Zn}^{2+}+2 e^{-}=\mathrm{Zn}(\mathrm{s})$	-26	-0.76
$\mathrm{Fe}^{2+}+2 e^{-}=\mathrm{Fe}(\mathrm{s})$	-14.9	-0.44
$\mathrm{Co}^{2+}+2 e^{-}=\mathrm{Co}(\mathrm{s})$	-9.5	-0.28
$\mathrm{V}^{3+}+e^{-}=\mathrm{V}^{2+}$	-4.3	-0.26
$2 \mathrm{H}^{+}+2 e^{-}=\mathrm{H}_{2}(\mathrm{~g})$	0.0	0.00
$\mathrm{S}(\mathrm{s})+2 \mathrm{H}^{+}+2 e^{-}=\mathrm{H}_{2} \mathrm{~S}$	+4.8	+0.14
$\mathrm{Cu}^{2+}+e^{-}=\mathrm{Cu}^{+}$	+2.7	+0.16
$\mathrm{AgCl}(\mathrm{s})+e^{-}=\mathrm{Ag}(\mathrm{s})+\mathrm{Cl}^{-}$	+3.7	$+0.22$
$\mathrm{Cu}^{2+}+2 e^{-}=\mathrm{Cu}(\mathrm{s})$	+11.4	+0.34
$\mathrm{Cu}^{+}+e^{-}=\mathrm{Cu}(\mathrm{s})$	+8.8	+0.52
$\mathrm{Fe}^{3+}+e^{-}=\mathrm{Fe}^{2+}$	$+13.0$	+0.77
$\mathrm{Ag}^{+}+e^{-}=\mathrm{Ag}(\mathrm{s})$	$+13.5$	$+0.80$
$\mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s})+3 \mathrm{H}^{+}+e^{-}=\mathrm{Fe}^{2+}+3 \mathrm{H}_{2} \mathrm{O}$	$+17.1$	$+1.01$
$\mathrm{IO}_{3}^{-}+6 \mathrm{H}^{+}+5 e^{-}=\frac{1}{2} \mathrm{I}_{2}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{O}$	$+104$	+1.23
$\mathrm{MnO}_{2}(\mathrm{~s})+4 \mathrm{H}^{+}+2 e^{-}=\mathrm{Mn}^{2+}+2 \mathrm{H}_{2} \mathrm{O}$	$+43.6$	+1.29
$\mathrm{Cl}_{2}(\mathrm{~g})+2 e^{-}=2 \mathrm{Cl}^{-}$	+46	$+1.36$
$\mathrm{Co}^{3+}+e^{-}=\mathrm{Co}^{2+}$	+31	+1.82

TABLE 7.2
Computing $E_{\text {cell }}^{0}$ from $E_{\mathrm{h}}^{0 \prime} \mathrm{~s}^{\mathrm{a}}$

		E_{h}^{0} Location
Reaction	(V)	
Cathode	$\mathrm{Cu}^{2+}(\mathrm{aq})+2 e^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.34
Anode	$\mathrm{Zn}(\mathrm{s}) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+2 e^{-}$	+0.76
Redox reaction	$\mathrm{Zn}(\mathrm{s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Cu}(\mathrm{s})+\mathrm{Zn}^{2+}(\mathrm{aq})$	+1.10

${ }^{\text {a }}$ The redox reaction and $E_{\text {cell }}^{0}$ are calculated by summing the half-reactions and E_{h}^{0} 's, respectively.
$\mathrm{SO}_{4}{ }^{2-}$ and S^{2-} important diagenesis reaction
$\mathrm{SO}_{4}^{2-}+8 \mathrm{H}^{+}+6 \mathrm{e}^{-}=\mathrm{S}_{(\mathrm{s})}+4 \mathrm{H}_{2} \mathrm{O}$
$\left.\mathrm{p} \varepsilon=\frac{1}{6} \log \mathrm{~K}+\frac{1}{6} \log \frac{\left\{\mathrm{SO}_{4}\right.}{\{\mathrm{S}\}} 4 \mathrm{H}^{+}\right\}^{8}$
$\left\{\mathrm{H}_{2} \mathrm{O}\right\}^{4}$
look up $\log \mathrm{K}$ or get it from $\Delta \mathrm{G}$ use 36.2
Activity of $\left\{\mathrm{H}_{2} \mathrm{O}\right\}=1\{\mathrm{~S}\}=1$ (a solid)
$\mathrm{p} \varepsilon=\quad \frac{1}{6}(36.2)+\frac{1}{6} \log \left\{\mathrm{SO}_{4}^{2-}\right\}\left\{\mathrm{H}^{+}\right\}^{8}$
seawater $\left\{\mathrm{SO}_{4}{ }^{2-}\right\}=\sim 30$ mmolar
$\mathrm{p} \varepsilon=6.03+\frac{1}{6} \log \left(30 \times 10^{-3}\right)+\frac{8}{6} \log \left\{\mathrm{H}^{+}\right\}$

$$
\begin{aligned}
& \mathrm{p} \mathrm{\varepsilon}=6.03-\frac{1.5}{6}-\frac{8}{6} \mathrm{pH} \\
& \mathrm{p} \varepsilon=5.78-\frac{4}{3} \mathrm{pH}
\end{aligned}
$$

Can use to construct $\mathrm{p} \mathrm{\varepsilon} / \mathrm{pH}$ relationship predictions for S system
$\mathrm{p} \mathrm{\varepsilon} / \mathrm{pH}$ of various biologically important species

Figure $7.8 \mathrm{p} \varepsilon-\mathrm{pH}$ diagrams for biologically important elements $\left(25^{\circ} \mathrm{C}\right)$. (a) The upper and lower lines represent equations 44 and 43 , respectively, the oxygen and hydrogen equilibria with water. (b) The nitrogen system, considering only stable equilibria. The only oxidation states involved are (-III), the elemental state, and (V). (c) $\mathrm{NH}_{4}^{+}, \mathrm{NH}_{3}, \mathrm{NO}_{3}^{-}$and NO_{2}^{-}are treated as species metastable with regard to N_{2}; that is, N_{2} is treated as a redox inert component (cf. Figure 9.10c and text). (d) Sulfur species stable for assumed conditions are SO_{4}^{2-}, elemental sulfur, and sulfides (cf. Figure
7.5 ad 7 7.7). (e) The thermodynamically possible existence of elemental C (graphite) is
ignored.

- can use $p \varepsilon$ to determine ratio of species under given conditions
- e.g. oxidation of S^{2-} by oxygen

$$
\frac{1}{4} \mathrm{O}_{2}+\mathrm{H}^{+}+\mathrm{e}^{-}=\frac{1}{2} \mathrm{H}_{2} \mathrm{O}
$$

and $\frac{1}{8} \mathrm{SO}_{4}{ }^{2-}+\frac{9}{8} \mathrm{H}^{+}+\mathrm{e}^{-}=\frac{1}{8} \mathrm{HS}^{-}+\frac{1}{2} \mathrm{H}_{2} \mathrm{O}$
$p \varepsilon^{\circ}$ for oxygen reduction is +20.75
larger than the sulphate reduction (+4.25)

So oxygen gets reduced and the S gets oxidised

TABLE 7.3 Log $K, p \mathrm{e}_{\mathrm{w}}^{0}$, and $E_{\mathrm{h}}^{0}(\mathrm{w})$ of Redox Processes ${ }^{\mathrm{a}}$			
Reaction	$p e^{0}(\equiv \log K)$	$p e_{*}^{0,9}$	$E_{h(w)}^{0}$
(1) $\frac{1}{4} \mathrm{O}_{2}(\mathrm{~g})+\mathrm{H}^{+}+e^{-}=\frac{1}{2} \mathrm{H}_{2} \mathrm{O}$	+20.75	+ 13.75	$+0.81$
(2) ${ }_{5}^{1} \mathrm{NO}_{3}^{-}+{ }_{5}^{\frac{6}{4}} \mathrm{H}^{+}+e^{-}=\frac{1}{10} \mathrm{~N}_{2}(\mathrm{~g})+{ }_{5}^{3} \mathrm{H}_{2} \mathrm{O}$	+21.05	+ 12.65	+0.75
(3) $\frac{1}{2} \mathrm{MnO}_{2}(\mathrm{~s})+\frac{1}{2} \mathrm{HCO}_{3}^{-}\left(10^{-3} \mathrm{M}\right)+\frac{3}{2} \mathrm{H}^{+}+e^{-}=\frac{1}{2} \mathrm{MnCO}_{3}(\mathrm{~s})+\frac{3}{8} \mathrm{H}_{2} \mathrm{O}$	-	+3.96	+0.23
(4) $\frac{1}{2} \mathrm{NO}_{3}^{-}+\mathrm{H}^{+}+e^{-}=\frac{1}{2} \mathrm{NO}_{2}^{-}+\frac{1}{2} \mathrm{H}_{2} \mathrm{O}$	+ 14.15	+7.15	+0.42
	+ 14.90	+6.15	+0.36
(6) $\frac{1}{6} \mathrm{NO}_{2}^{-}+\frac{4}{3} \mathrm{H}^{+}+e^{-}=\frac{1}{6} \mathrm{NH}_{4}^{+}+\frac{1}{3} \mathrm{H}_{2} \mathrm{O}$	+ 15.14	+5.82	+0.34
(7) $\frac{1}{2} \mathrm{CH}_{3} \mathrm{OH}+\mathrm{H}^{+}+e^{-}=\frac{1}{2} \mathrm{CH}_{4}(\mathrm{~g})+\frac{1}{2} \mathrm{H}_{2} \mathrm{O}$	+9.88	+2.88	+0.17
(8) $\frac{1}{4} \mathrm{CH}_{2} \mathrm{O}+\mathrm{H}^{+}+e^{-}=\frac{1}{4} \mathrm{CH}_{4}(\mathrm{~g})+\frac{1}{4} \mathrm{H}_{2} \mathrm{O}$	+6.94	-0.06	+0.00
(9) $\mathrm{FeOOH}(\mathrm{s})+\mathrm{HCO}_{3}^{-}\left(10^{-3} \mathrm{M}\right)+2 \mathrm{H}^{+}+e^{-}=\mathrm{FeCO}_{3}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}$	-	$-0.8{ }^{\text {b }}$	-0.05
(10) $\frac{1}{2} \mathrm{CH}_{2} \mathrm{O}+\mathrm{H}^{+}+e^{-}=\frac{1}{2} \mathrm{CH}_{3} \mathrm{OH}$	+3.99	- 3.01	-0.18
(11) ${ }_{6}^{1} \mathrm{SO}_{4}^{2-}+\frac{4}{3} \mathrm{H}^{+}+e^{-}=\frac{1}{6} \mathrm{~S}(\mathrm{~s})+\frac{2}{3} \mathrm{H}_{2} \mathrm{O}$	+6.03	-3.30	-0.20
(12) $\frac{1}{8} \mathrm{SO}_{4}^{2-}+{ }_{4}^{5} \mathrm{H}^{+}+e^{-}=\frac{1}{8} \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\frac{1}{2} \mathrm{H}_{2} \mathrm{O}$	+5.25	-3.50	-0.21
(13) $\frac{1}{8} \mathrm{SO}_{4}^{2-}+\frac{9}{8} \mathrm{H}^{+}+e^{-}=\frac{1}{8} \mathrm{HS}^{-}+\frac{1}{2} \mathrm{H}_{2} \mathrm{O}$	+4.25	-3.75	-0.22
(14) $\frac{1}{2} \mathrm{~S}(\mathrm{~s})+\mathrm{H}^{+}+e^{-}=\frac{1}{2} \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$	+2.89	-4.11	-0.24
(15) $\frac{1}{8} \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}^{+}+e^{-}=\frac{1}{8} \mathrm{CH}_{4}(\mathrm{~g})+\frac{1}{4} \mathrm{H}_{2} \mathrm{O}$	+2.87	-4.13	-0.24
(16) $\frac{1}{6} \mathrm{~N}_{2}(\mathrm{~g})+\frac{4}{3} \mathrm{H}^{+}+e^{-}=\frac{1}{3} \mathrm{NH}_{4}^{+}$	+4.68	-4.68	-0.28
(17) $\frac{1}{2}\left(\mathrm{NADP}^{+}\right)+\frac{1}{2} \mathrm{H}^{+}+e^{-}=\frac{1}{2}(\mathrm{NADPH})$	-2.0	-5.5	-0.33
(18) $\mathrm{H}^{+}+e^{-}=\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})$	0.0	-7.00	-0.41
(19) Oxidized ferredoxin $+e^{-}=$reduced ferredoxin	-7.1	-7.1	-0.42
(20) $\frac{1}{4} \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}^{+}+e^{-}=\frac{1}{24}$ (glucose) $+\frac{1}{4} \mathrm{H}_{2} \mathrm{O}$	-0.20	-7.20	-0.43
(21) $\frac{1}{2} \mathrm{HCOO}^{-}+\frac{3}{2} \mathrm{H}^{+}+e^{-}=\frac{1}{2} \mathrm{CH}_{2} \mathrm{O}+\frac{1}{2} \mathrm{H}_{2} \mathrm{O}$	+2.82	-7.68	-0.45
(22) ${ }_{4}^{1} \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}^{+}+e^{-}={ }_{4}^{\frac{1}{4}} \mathrm{CH}_{2} \mathrm{O}+{ }_{4}^{1} \mathrm{H}_{2} \mathrm{O}$	-1.20	-8.20	-0.48
(23) $\frac{1}{2} \mathrm{CO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{H}^{+}+e^{-}=\frac{1}{2} \mathrm{HCOO}^{-}$	-4.83	-8.33	-0.49
Source: From Aquatic Chemistry, W. Stumm and J. J. Morgan. copyright © 1970 by John Wiley \& Sons, Inc., New York, p. 318. Reprinted by permission. See Stumm and Morgan (1970) for data sources. ${ }^{2}$ Values for $p e_{\mathrm{w}}^{0}$ apply to the electron activity for unit activities of oxidant and reductant in neutral water, that is, at pH $=7.0$ for $25^{\circ} \mathrm{C}$. "These data correspond to $\left(\mathrm{HCO}_{3}^{-}\right)=10^{-3} M$ rather than unity and so are not exactly pee; they represent typical aquatic conditions more nearly than $p e_{*}^{0}$ values do.			

Write equation

$$
\frac{1}{8} \mathrm{HS}^{-}+\frac{1}{4} \mathrm{O}_{2}=\frac{1}{8} \mathrm{SO}_{4}^{2-}+\frac{1}{8} \mathrm{H}^{+}
$$

Can predict reaction products using

$$
\mathrm{p} \varepsilon_{1}^{\circ}-\mathrm{p} \varepsilon_{2}^{\circ}=\underline{1} \log \mathrm{~K}_{\mathrm{cell}}
$$

n
(full derivation Libes P114)

$$
\text { 13.75-(-3.75) }=\frac{1}{1} \log \frac{\left\{\mathrm{SO}_{4}^{2-}\right\}^{1 / 8}}{\mathrm{P}_{\mathrm{O} 2}^{1 / 4}} \frac{\left\{\mathrm{H}^{+}\right\}^{1 / 8}}{\left\{\mathrm{HS}^{-}\right\}}{ }^{1 / 8}
$$

$$
17.5=\frac{1}{8} \log \frac{\left\{\mathrm{SO}_{4}{ }^{2-\}}\right.}{\left\{\mathrm{HS}^{-}\right\}} \frac{-1}{8} \mathrm{pH}-\frac{1}{4} \log \mathrm{PO}_{2}
$$

- Assuming $\mathrm{pH}=8$ and a PO_{2} of 0.21 atm (partial pressure of 0.21 atm)
Calculate:

$$
{\left.\frac{\left\{\mathrm{SO}_{4}\right.}{4}{ }_{4}^{2-\}}\right\}=10^{149}, ~}_{\text {Hen }}
$$

i.e. no HS- present

Calculate the energy released from reaction Δ G-99.91 kJ/mole
In presence of oxygen S will be oxidised to $\mathrm{SO}_{4}{ }^{2-}$

Energy can be gained from the reaction
Is the basis of the life forms around hydrothermal vents

Micro-organisms make a living oxidising sulphide to sulphur in an oxic environment

The half reaction with the highest $p \varepsilon$ will force the other reactions to proceed as oxidations

- The greater the difference in $p \varepsilon$ between the oxidising and reducing agents the greater the free energy yield for the reaction
- can construct a series of favourable oxidants for organic matter

Greatest free energy yield is from the oxidation of organic matter by oxygen reduction
$\mathrm{CH}_{2} \mathrm{O}+\mathrm{O}_{2}=\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{G}=-125.31 \mathrm{~kJ} / \mathrm{mole}$ (-29.95 kcal/mole)

Oxidation sequence on the redox scale

- Can determine which would be the next most favoured substrate to oxidise in the absence of organic matter
- Sulphide is next
- Sunlight is ultimate energy source driving these reactions (not hydrothermal sulphide)
- The net energy from the oxidation of the carbon is a result of the energy from sunlight being originally used to reduce oxidised carbon to organic carbon

Photosynthetic organisms started a disproportionation in the thermodynamic state of matter

Produced two large pools of material that are thermodynamically unstable in each others presence -- organic matter and oxygen

Kinetics allows co-existence!
https://www.youtube.com/watch?v=VnbiVw_1FNs

